
WebSphere Proof of Technology

March 2018

WebSphere Liberty
Security Introduction

James Mulvey

STSM, WAS Security and Z architect

jmulvey@us.ibm.com

.3

Agenda

• Security features in Liberty
– Review of feature appSecurity-2.0
– Comparing Liberty security with traditional WAS

• Authentication
– User registries (URs), SCIM
– Web applications security

• Single sign-on overview
– LTPA, SAML, SPNEGO, OAuth 2.0, JWTs, OpenID Connect, and SocialLogin

• Authorization
– JEE groups and roles in Liberty

• Other items
– securityUtility
– Java EE 8/JSR 375, Auditing and Liberty (beta)
– What we’re working on now

1

Reminder: Part 2 for Liberty security

• Security Hardening and Best Practices for Running WebSphere Liberty in
Production - April 6th at 11am ET

• In this session, we'll cover some fundamental best practices related to Liberty and
security in a production environment. http://ibm.biz/BdZEwB

2

http://ibm.biz/BdZEwB

Liberty Current Features 17.0.0.4

batchSMFLogging-1.0 zosLocalAdapters-1.0 zosTransaction-1.0

zosConnect-1.0 zosRequestLogging-1.0 zosWlm-1.0 zosSecurity-1.0

collectiveController-1.0 healthAnalyzer-1.0 scalingController-1.0

clusterMember-1.0 dynamicRouting-1.0 healthManager-1.0 scalingMember-1.0

cloudant-1.0 rtcomm-1.0 batchManagement-1.0

couchdb-1.0 sipServlet-1.0 mediaServerControl-1.0

javaee-7.0 rtcommGateway-1.0

Java EE 6 subset wsAtomicTransaction-1.2 wsSecurity-1.1

mongodb-2.0 wsSecuritySaml-1.0

bells-1.0 osgiAppIntegratio-1.0 adminCenter-1.0 constrainedDelegation-1.0 oauth-2.0

concurrent-1.0 osgiBundle-1.0 apiDiscovery-1.0 federatedRepository-1.0 openid-2.0

httpWhiteboard-1.0 osgiConsole-1.0 bluemixUtility-1.0 jwt-1.0 openidConnectClient-1.0

javaMail-1.5 wab-1.0 collectiveMember-1.0 ldapRegistry-3.0 openidConnectServer-1.0

jdbc-4.2 webProfile-6.0 distributedMap-1.0 requestTiming-1.0 passwordUtilities-1.0

jpaContainer-2.0 webProfile-7.0 eventLogging-1.0 restConnector-2.0 samlWeb-2.0

jsfContainer-2.2 logstashCollector-1.0 serverStatus-1.0 scim-1.0

json-1.0 monitor-1.0 sessionDatabase-1.0 socialLogin-1.0

microProfile-1.2 openapi-3.0 timedOperations-1.0 spnego-1.0

opentracing-1.0 productInsights-1.0 webCache-1.0 transportSecurity-1.0

z/OS

ND

Core

Base

Open
Liberty

New in
1Q17

New in
4Q17

New in
2Q17

New in
3Q17

APIs

Security
Operations

Liberty Current Features 17.0.0.4

batchSMFLogging-1.0 zosLocalAdapters-1.0 zosTransaction-1.0

zosConnect-1.0 zosRequestLogging-1.0 zosWlm-1.0 zosSecurity-1.0

collectiveController-1.0 healthAnalyzer-1.0 scalingController-1.0

clusterMember-1.0 dynamicRouting-1.0 healthManager-1.0 scalingMember-1.0

cloudant-1.0 rtcomm-1.0 batchManagement-1.0

couchdb-1.0 sipServlet-1.0 mediaServerControl-1.0

javaee-7.0 rtcommGateway-1.0

Java EE 6 subset wsAtomicTransaction-1.2 wsSecurity-1.1

mongodb-2.0 wsSecuritySaml-1.0

bells-1.0 osgiAppIntegratio-1.0 adminCenter-1.0 constrainedDelegation-1.0 oauth-2.0

concurrent-1.0 osgiBundle-1.0 apiDiscovery-1.0 federatedRepository-1.0 openid-2.0

httpWhiteboard-1.0 osgiConsole-1.0 bluemixUtility-1.0 jwt-1.0 openidConnectClient-1.0

javaMail-1.5 wab-1.0 collectiveMember-1.0 ldapRegistry-3.0 openidConnectServer-1.0

jdbc-4.2 webProfile-6.0 distributedMap-1.0 requestTiming-1.0 passwordUtilities-1.0

jpaContainer-2.0 webProfile-7.0 eventLogging-1.0 restConnector-2.0 samlWeb-2.0

jsfContainer-2.2 logstashCollector-1.0 serverStatus-1.0 scim-1.0

json-1.0 monitor-1.0 sessionDatabase-1.0 socialLogin-1.0

microProfile-1.2 openapi-3.0 timedOperations-1.0 spnego-1.0

opentracing-1.0 productInsights-1.0 webCache-1.0 transportSecurity-1.0

z/OS

ND

Core

Base

Open
Liberty

New in
1Q17

New in
4Q17

New in
2Q17

New in
3Q17

APIs

Security
Operations

appSecurity-2.0 jaxrsClient-2.0 jsp-2.3

beanValidation-1.1 jdbc-4.2 managedBeans-1.0

cdi-1.2 jndi-1.0 servlet-3.1

ejbLite-3.2 jpa-2.1 ssl-1.0

el-3.0 jsonp-1.0 websocket-1.1

jaxrs-2.0 jsf-2.2

cdi-1.2 mpConfig-1.1 mpMetrics-1.0

jaxrs-2.0 mpFaultTolerance-1.0 mpHealth-1.0

jsonp-1.0 mpJwt-1.0

appClientSupport-1.0 ejbPersistentTimer-1.0 jaspic-1.1 managedBeans-1.0

batch-1.0 ejbRemote-3.2 jaxb-2.2 mdb-3.2

concurrent-1.0 j2eeManagement-1.1 jaxws-2.2 wasJmsClient-2.0

ejb-3.2 javaMail-1.5 jca-1.7 webProfile-7.0

ejbHome-3.2 jacc-1.5 jms-2.0 wmqJmsClient-2.0

Liberty Current Features 17.0.0.4

z/OS

ND

Core

Base

Open
Liberty

New in
1Q17

New in
4Q17

New in
2Q17

New in
3Q17

5

appSecurity-2.0

6

Enabling appSecurity-2.0 means enabling

SSL/TLS for the server. It also means

LTPA is enabled. More on that coming …

• openidConnectClient-1.0, openidConnectProvider-1.0 – Open ID Connect Client and Provider

Comparing Liberty security to traditional WAS

7

Liberty Traditional WAS

Minimal ports opened Yes No

File user registry Yes (server.xml) Yes (file based)

Federated user registries Yes Yes

OAuth, OpenID, OIDC client Yes Yes

OpenID Connect Provider Yes No

LTPA, SPNEGO tokens Yes Yes

SAML Web SSO Yes Yes

JSON web tokens (JWTs) Yes No

Secure remote admin Yes (mandatory) Yes (but can be turned off)

User and group API Yes Yes

Auditing No (in beta) Yes

Local OS registry Yes (z/OS SAF only) Yes

WebSphere Proof of Technology

March 2018

Authentication
User Registries supported with Liberty

User Registries

• User Registries (UR) contain the user and group information.

• They are used during the authentication process.

• When a user provides their credentials (ie: username and password), they
are checked against the UR that is configured.

• They also contain the group information which is later used for
authorization checks to permit/deny access to protected resources.

• Liberty profile supports multiple types of user registries.

9

Types of registries in Liberty

• Basic

• Quickstart

• LDAP (Lightweight Directory Access Protocol)

• Custom

• Local (z/OS only – SAF)

• Federated

10

Liberty Server
Web Container

Application

Browser/Client

Security
Username

Password

Log In

Basic User
Registry

Alex
Kevin
Group 1
Group 2

1. Access protected
resource

2. Web Container
calls security
runtime

3. Security runtime
prompts user for
credentials

4. User enters
credentials

5. Security runtime
checks
credentials
against the user
registry in the
Liberty server
config

6. Registry returns if
credentials are
valid or not

7. If valid, proceed
to authorization

Basic user registry

1

2

3

4

5

6

7

11

Basic user registry

• A basic registry is a simple file based registry.

• The user and group information is configured in the server.xml

• It is typically used in development environments (not production)

• It is a fast and simple way to test the access to your protected application.

• Example
<basicRegistry id="basic1" realm="SampleRealm">

<user name="user2" password="user2pwd" />
<user name="user1" password="user1pwd" />
<group name="group1">

<member name="user1" />
</group>

</basicRegistry>

12

Quickstart security

• Quickstart security is a form of basic registry. It’s designed to provide a basic
security configuration with minimal complexity. Not for production use.

• It contains just one user.

• This user also has access to the admin role

• Used primarily to provide protection for remote operations (restConnector)
when no application security is needed.

• Example
<quickStartSecurity userName="bob” userPassword="bobpassword"/>

13

Liberty Server
Web Container

Application

Browser/Client

Security Username

Password

Log In

LDAP User
Registry

Alex
Kevin
Group 1
Group 2

1. Access protected
resource

2. Web Container
calls security
runtime

3. Security runtime
prompts user for
credentials

4. User enters
credentials

5. Security runtime
checks
credentials
against the user
registry from an
LDAP server

6. Registry returns if
credentials are
valid or not

7. If valid, proceed
to authorization

LDAP user registry

1

2

3

4

5

6

7

14

LDAP user registries

• LDAP registries are based on the LDAP protocol.

• It is a very well known industry standard protocol used by many customers.

• There are many well known LDAP servers in the market. Examples include:

– IBM Directory Server

– Active Directory

• The latest LDAP version is v3.

• Liberty profile supports any LDAP server compliant to LDAP v3.

• Most customers use LDAP in production.

15

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ldap.html

https://www.ibm.com/support/knowledgecenter/en/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ldap.html

LDAP Configuration

• Here is an example of LDAP configuration in Liberty (IBM Directory Server):
<ldapRegistry id="ldap"

realm="SampleLdapIDSRealm"

host=“myHost.com" port=“443“

ignoreCase="true"

baseDN="o=ibm,c=us"

bindDN=“o=myCompany"

bindPassword=“mySecret"

ldapType="IBM Tivoli Directory Server"

idsFilters="ibm_dir_server"

sslEnabled="true"

sslRef="LDAPSSLSettings">

</ldapRegistry>

16

LDAP Configuration

• Here is an example of LDAP configuration in Liberty showing use of filtering
for IBM Directory Server :

<idsLdapFilterProperties id="ibm_dir_server"

userFilter="(&(uid=%v)(objectclass=ePerson))"

groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUnique
Names)(objectclass=groupOfURLs)))"

userIdMap="*:uid"

groupIdMap="*:cn"

groupMemberIdMap="ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember">

</idsLdapFilterProperties>

17

Liberty Server
Web Container

Application

Browser/Client

Security
Username

Password

Log In

CUSTOM User
Registry DB

(SPI)

Alex
Kevin
Group 1
Group 2

1. Access protected

resource

2. Web Container

calls security

runtime

3. Security runtime

prompts user for

credentials

4. User enters

credentials

5. Security runtime

checks

credentials

against the

CUSTOM user

registry (SPI

implementation

can be used)

6. Registry returns

if credentials are

valid or not

7. If valid, proceed

to authorization

Custom user registry (CUR)

1

2

3

4

5

6

7

18

Custom User Registry

• Liberty profile provides an SPI (service provider interface)

(com.ibm.websphere.security.UserRegistry) where customers can provide their own User
Registry implementation.

– Also need to implement to com.ibm.websphere.security.Result interface.

– The SPI helps with integrating with any type of user repository. For example – a database
based repository

• Customers implement this and configure this as user extension feature in the
server.xml.

<featureManager>

... <feature>usr:customRegistrySample-1.0</feature>

</featureManager> https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_sec_custmr.html

• This is one of the common ways to integrate with existing user customized
repositories.

19

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_sec_custmr.html

Liberty Server on
z/OS

Web Container

Application

Browser/Client

Security Username

Password

Log In

z/OS SAF User
Registry

(IBM RACF, CA Top
Secret, or CA ACF2)

Alex
Kevin
Group 1
Group 2

1

1. Access protected
resource

2. Web Container
calls security
runtime

3. Security runtime
prompts user for
credentials

4. User enters
credentials

5. Security runtime
checks credentials
against the SAF
user registry

6. Registry returns if
credentials are
valid or not

7. If valid, proceed to
authorization

z/OS local registry (SAF)

2

3

4

5

6

7

20

Local/SAF User Registry

• Liberty profile provides support for the System Authorization Facility (SAF)
framework on z/OS.

– Need to configure zosSecurity-1.0 in featureManager

<feature>zosSecurity-1.0</feature>

• Example server.xml config:
<feature>appSecurity-2.0</feature>

<feature>zosSecurity-1.0</feature>

<safRegistry id="saf" realm="MYPLEX" />

<safCredentials unauthenticatedUser=”MYDFLTU” profilePrefix=”MDEF" />

<safAuthorization id="saf” racRouteLog="ASIS" enableDelegation="true" />

<safRoleMapper profilePattern="%profilePrefix%.%resource%.%role%” toUpperCase="false" />

21

What’s needed with SAF on z/OS?

1. Liberty z/OS Angel Process available to the server

2. SERVER SAF profiles with the server ID having READ
• BBG.AUTHMOD.BBGZSAFM.SAFCRED with server ID = READ
• BBG.SECPFX.<profile_prefix> where the prefix value is related to your

server prefix
• Server ID granted READ to this SECPFX profile

3. The server.xml specifies SAF and names prefix value

4. A defined "unauthenticated" (i.e. "default") user
• This is the ID that is used prior to successful authentication
• This ID should have no TSO segment, and be RESTRICTED

5. User authenticating must have valid SAF definition (OMVS segment, valid
home directory, not revoked)

6. APPL profile with READ to required IDs
• The APPL profile is equal to the <profile_prefix> value you defined on

the SERVER profile (#2)
• The server ID has READ to this APPL
• The unauthenticated user has READ to this APPL
• The ID attempting to authenticate has READ to this APPL

Angel
Process

READ?

READ?

SERVER
BBG.AUTHMOD.BBGZSAFM.SAFCRED
BBG.SECPFX.<profile_prefix>

APPL
<profile_prefix>

Liberty z/OS
Server

User attempting to
authenticate

Unauthenticated User
(the "Default" User)

Yes

No

No

Yes

Fail

server.xml

1

2

3

45

6

22

Liberty Server
Web Container

Application

Browser/Client

Security

Federated

User

Repositories

1. Access protected

resource

2. Web Container

calls security

runtime

3. Security runtime

prompts user for

credentials

4. User enters

credentials

5. Security runtime

checks

credentials

against the

registry – which

is a federation

of user

repositories

6. Registry returns

if credentials are

valid or not

7. If valid, proceed

to authorization

Federation of user repositories

Username

Password

Log In

1

2

3

4

5

6

7

23

LDAP1
Alex

Kevin

Group 1

Group 2

LDAP2
John

Mary

Group3

Federated Repositories

• Federated Repositories are used to federate multiple repositories into a
single logical registry.

– Very useful when the user/group data is spread across multiple repositories

– For example, when one company buys/integrates with other company, they
would have different user repositories.

• Federation of multiple LDAP repositories is common with many advanced
customers.

• This feature is enabled by the federatedRepository-1.0 feature.

• This feature also supports the use of additional attributes in the LDAP
server that basic LDAP configuration does not support.

24

Federated Repositories server.xml example

• IBM Directory Server
<ldapRegistry id="TDS” realm="SampleLdapIDSRealm" host=“myHost1" port=“9443" ignoreCase="true“
baseDN="o=ibm,c=us“ …….

• Active Directory
<ldapRegistry id="AD” realm="SampleLdapADRealm" host=“myHost2" port=“9443" ignoreCase="true"
baseDN="cn=users,dc=austin,dc=com“ …….

• Federation
<federatedRepository>

<primaryRealm name="FederationRealm">

<participatingBaseEntry name="o=ibm,c=us"/>

<participatingBaseEntry name="cn=users,dc=austin,dc=ibm,dc=com"/>

</primaryRealm>

</federatedRepository>

25

More on user registries …

• In addition to UserRegistry being an SPI, there is also an API
– This implies that applications can call the UR methods to get user and group information just like

the security service.

– Applications can perform their own customized checking of user credentials and get the user/group
information for performing additional checks.

– Refer to : com.ibm.wsspi.security.registry.RegistryHelper

– For more search on rwlp_sec_apis__example01

• System for Cross-domain Identity Management (SCIM)
– Offers a standard set of APIs defined by the SCIM 1.1 specification to handle user and group

information.

– Liberty profile supports SCIM using the scim-1.0 feature.

– Provides retrieval of user and group information using any attributes that are defined in the LDAP
registry.

– Also need the federatedRespository-1.0 feature to support additional attributes from LDAP.
26

https://www.ibm.com/support/knowledgecenter/en/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/rwlp_sec_apis.html#rwlp_sec_apis__example01

More on user registries …

• Custom Adapter
– In addition to Custom user Registry (CUR), a custom adapter SPI is also supported.

– The custom adapter SPI allows both read and write capabilities

• CUR only provides read capability

– SPI is com.ibm.wsspi.security.wim.CustomRepository

– The SPI uses the com.ibm.wsspi.security.wim.modelRoot.Root object to handle the UR
attributes.

– It is implemented as a user extension feature.

27

WebSphere Proof of Technology

March 2018

Authentication
Web application security

Review of web application authentication

• With Java EE and web applications, there are several ways that
authentication is done.

1. Basic authentication

2. Form based authentication

3. Client authentication

4. Mutual authentication

29

Basic authentication

1. Client requests access to a ‘protected resource’.

2. Server responds with an authentication challenge (HTTP 401 WWW-Authenticate and the realm name).

3. Client re-submits request adding Authorization: Basic userid:password (64bit encoded).

4. Server authenticates with user for the specified realm. If successful, returns HTTP 200 and result of request. If not,
again returns HTTP 401 Unauthorized with WWW-Authenticate and the realm name,

30

Browser/Client

1 Liberty Server

Web container
/myApp URI is
protected resource

Security

2
Response http 401 w/header
WWW-Authenticate Basic
realm=myRealm

http get host:port/myApp

http get host:port/myApp w/header
Authorization: Basic userid:password

3

4
Response http 200 OK
… payload …

Form-based authentication

1. Client requests access to a ‘protected resource’.

2. If client is unauthenticated, server re-directs client to login page.

3. Client submits login form to the server with username and password.

4. Server attempts to authenticate user.
a) If authentication succeeds, user’s principal is checked to ensure it has the role that is needed to access the resource. If user is authorized, the server

re-directs the client to the resource using stored URL path. Server passes back JESSIONID cookie with session context that is used for subsequent
calls.

b) If authentication fails, or the user is not in the proper role, client forwarded or re-directed to an error page.

31

Browser/Client

1 Liberty Server

Web container
/myApp URI is
protected resource

Security

2

http get host:port/myApp

Form submitted

3

Re-direct with JSESSIONID

Username

Password

Log In

Security check success

Security check fail4a

4b

Log In

success!

Log In

error

Re-direct to login page

j_security_check

<form method="POST"

action="j_security_check"> <input

type="text" name="j_username">

<input type="password"

name="j_password"> </form>

Re-direct NO JSESSIONID

Client certificate authentication

• With client authentication, the server authenticates the client using the client’s
public key certificate.

• Client authentication runs over a secured HTTP session over SSL/TLS (HTTPS).

• SSL/TLS is used to provide data encryption, server authentication, message
integrity, and optional client authentication for a TCP/IP connection.

– Public key certificates are the digital equivalent of a passport. The certificate is issued by
a trusted organization, a certificate authority (CA), and provides identification for the
bearer.

32

1. Client requests access to a ‘protected resource’.

• SSL handshake begins with Client Hello message and server responds with Server Hello (each agreeing on cipher suite -server has control over what is selected)

2. Server presents its certificate to the client (signed by a certificate authority/CA, or self-signed, and containing it’s public key).

3. Client verifies server’s certificate (using it’s store of CA public keys to ensure the server is who it claims to be).

• If server certificate (common name, date, issuer) is verified, client creates ‘pre-master’ secret (for RSA) for session, encrypts this with server’s public key and sends it to the server.

• Server uses it’s private key to decrypt the pre-master secret. Both server and client negotiate the value of a ‘master key’ which is never actually sent over the wire.

• Session is NOW ENCRYPTED

4. Client sends it’s username:password to the server.

5. Server authenticates the client using username and password.

• Server does role base access check and if permitted processes request and responds

Browser/Client

1

Liberty
Server

Web container
/myApp URI is
protected resource with
Secure connection
required
or server configured for
HTTPS only

Security

2
Server returns its certificate
(server.cert).

get http://host:port/myApp

<SSL handshake starts>

<SSL complete data now encrypted>

get https://host:port/myApp w/header
Authorization: Basic userid:password

3

5

Response http 200 OK
… payload …

Verify server’s
certificate.

4

myKeys.jks

server.cert

trustStore

server.cert

User name/password over SSL (aka 1-way SSL)

Authenticate user
& check access

Server.xml
<keyStore id=”myKeys"
location=”mykeys.jks"
type="JKS"
password="myPswd" />

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig"
keyStoreRef=”myKeys"
trustStoreRef=”defaultTustStore"/>

33

Browser/Client

1

Liberty
Server

Web container
/myApp URI is
protected resource with
Secure connection
required
or server configured for
HTTPS only

Security

2
Server returns its certificate
(server.cert).

get http://host:port/myApp

<SSL handshake starts>

<SSL complete data now encrypted>

get https://host:port/myApp

3

Response http 200 OK
… payload …

Verify server’s
certificate.

4

myKeys.jks

server.cert

trustStore

server.cert

Certificate based mutual authentication (aka 2-way SSL)

Server.xml
<keyStore id=”myKeys"
location=”mykeys.jks"
type="JKS"
password="myPswd" />

myTrustStore

client.cert

Client
keyStore

client.cert

5
Send client certificate (client.cert)

1. Client requests access to a ‘protected resource’.

• SSL handshake begins with Client Hello message and server responds with Server Hello (each agreeing on cipher suite -server has control over what is selected)

2. Server presents its certificate to the client (signed by a certificate authority/CA, or self-signed, and containing it’s public key).

3. Client verifies server’s certificate (using it’s store of CA public keys to ensure the server is who it claims to be).
• If server certificate (common name, date, issuer) is verified, client creates ‘pre-master’ secret (for RSA) for session, encrypts this with server’s public key and sends it to the server.

• Server uses it’s private key to decrypt the pre-master secret. Both server and client negotiate the value of a ‘master key’ which is never actually sent over the wire.

• Session is NOW ENCRYPTED

4. Client sends it’s username:password to the server.

5. Server authenticates the client using username and password.

• Server does role base access check and if permitted processes request and responds

Authenticate user
& check access

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig"
keyStoreRef=”myKeys"
trustStoreRef=”mytrustStore"
clientAuthenticationSupported="true" />

34

Certificate generation in Liberty

• There are several ways to generate certificates for a Liberty server

1. securityUtility command line interface (CLI)

• cd …/wlp/bin directory

• securityUtility createSSLCertificate --server=server_name --password=your_password

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html

2. WebSphere Developer Tools (WDT) –eclipse based tooling

• Navigate to create certificate page

– Utilities->Create SSL certificate

» In the Keystore password field, type a password for your SSL certificate.

» Click the Specify validity period (days) field, specify the number of days you want certificate to be valid
for. Minimum length of time is 365 days.

» Click the Specify subject (DN): field and provide a value for your SSL subject.

» Click finish

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/t_createsslcertificate.html

35

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/t_createsslcertificate.html

SSL Keystores and Certificates in Liberty

• Default keystore created for a Liberty server when SSL is enabled:

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig" keyStoreRef=”myKeys" trustStoreRef=”mytrustStore" clientAuthenticationSupported="true" />

server.xml
<featureManager>

<feature>ssl-1.0</feature> or
<feature>transportSecurity-1.0</feature>

<featureManager>

<keyStore id=“defaultKeyStore"
password=“yourPassword” />

• Default keystore location: the file is called key.jks and is

in the server or clients resources/security directory.

• Keystore type: The keystore type is JKS.

• Password: comes from the configuration.

• Default certificate that is created by Liberty:

Type: The certificate is a self-signed certificate.

• Size: The default certificate size is 2048.

• Signature algorithm: The signature algorithm for the

certificate is SHA256WITHRSA.

• Validity: The certificate is valid for 365 days.

• SubjectDN: The certificate gets created with:

CN=<hostname>,OU=<client or server name>,

O=ibm,C=US as the SubjectDN.

• When server starts …

Default location of key store :
/<WLP_USER_DIR>/myServer/resources/security/key.jks

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_liberty_ssl_defaults.html 36

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_liberty_ssl_defaults.html

What about CA and 3rd party issued certificates?

• For production purposes, self signed certificates are not likely to be used. So how do
I configure Liberty with Certificate Authority certs?
– Apply for signed CA cert from Certificate Authority and put it in trustStore. An example showing the process:

1. Export the server CA certificate and key in Public Key Cryptography standards 12 format.
openssl pkcs12 -export -in myServer.crt -inkey server.key -out key.p12 -name default -passout pass:mypassword

2. Import the server PKCS12 file to the server’s keystore.jks file for the server (below shown as myKeys.jks).
keytool -importkeystore -deststorepass mypassword -destkeypass mypassword -destkeystore myKeys.jks -srckeystore key.p12 -srcstoretype
PKCS12 -srcstorepass mypassword -alias default

3. Import the server CA certificate to the keystore trust.jks file for the server (below shown as myTrustStore.jks).
keytool -importcert -keystore myTrustStore.jks -storepass mypassword -file myServer.crt -alias default -noprompt

37

• Use Openssl to create key.p12

• Use keytool to import to .jks

myTrustStore.jks

myServer.crt

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig" keyStoreRef=”myKeys"
trustStoreRef=”myTrust”/>

<keyStore id=”myTrust" location=”myTrustStore.jks"
type="JKS" password="myPswd1" />

<keyStore id=”myKeys" location=”mykeys.jks" type="JKS"
password="myPswd2" />

myKeys.jks

myServer.crt

Certificate

Authority

Trust Store

myServer.crt

Use keytool

to import to

trust store

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_icp_auto_ssl3.html

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_icp_auto_ssl3.html

What about certificates and z/OS SAF keyrings?

• How do I configure z/OS SAF keyrings for my certificates?

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig" keyStoreRef=”myKeys" trustStoreRef=”mytrustStore" clientAuthenticationSupported="true" />

server.xml
<featureManager>

<feature>ssl-1.0</feature> or
<feature>transportSecurity-1.0</feature>
<feature>zosSecurity-1.0</feature>

<featureManager>

<keyStore id="defaultKeyStore"

location="safkeyring:///WASKeyring"

type="JCERACFKS" password="password"

fileBased="false" readOnly="true" />

38

The RACF® key ring needs to be set up before you configure them for
use by the Liberty server. The server does not create certificates and
add them to RACF.

Sample RACF commands:
RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('CA for Liberty’)

OU('LIBERTY’)) WITHLABEL('LibertyCA.LIBERTY') TRUST

NOTAFTER(DATE(2018/12/31))

RACDCERT ADDRING(Keyring.LIBERTY) ID(aaaaaa)

RACDCERT ID (aaaaaa) GENCERT SUBJECTSDN(CN('yourhost.com’)

O('IBM') OU('LIBERTY'))WITHLABEL('DefaultCert.LIBERTY’)

SIGNWITH(CERTAUTH LABEL('LibertyCA.LIBERTY’))

NOTAFTER(DATE(2018/12/31))

RACDCERT ID(aaaaaa) CONNECT (LABEL('DefaultCert.LIBERTY’)

RING(Keyring.LIBERTY) DEFAULT)

RACDCERT ID(aaaaaa) CONNECT (RING(Keyring.LIBERTY)

LABEL('LibertyCA.LIBERTY') CERTAUTH)

SETROPTS RACLIST(FACILITY) REFRESH

For details, refer to Liberty z/OS quick start guide here:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

WebSphere Proof of Technology

March 2018

Single sign-on

Single sign-on support in Liberty

• We’ll review and compare a few options for single sign-on with Liberty.
These include:

1. LTPA

2. SAML

3. SPNEGO

4. OAuth 2

5. OpenID Connect (Server and Client)

– JSON web tokens (JWTs) as a core component

– Social Login

40

Liberty & Single sign-on – let’s start with LTPA

• Light weight third-party authentication (LTPA)

– LTPA uses a shared set of keys between servers to enable
cryptographic signatures in tokens that represent user
sessions.

– LTPA returns a token in an HTTP cookie, called ltpaToken2
(can be customized)

– LTPA tokens are time sensitive. Default expiration time is 120
mins. Servers sharing LTPA keys/tokens must have their
time/date synchronized (coordinated UTC).

– When appSecurity-2.0 is enabled in Liberty, LTPA keys are
automatically created if they do not already exist.

41

Default location of LTPA keys :
/<WLP_USER_DIR>/myServer/resources/security/ltpa.keys or

${server.output.dir}/resources/security/ltpa.keys

Server.xml
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id=”mySSLConfig" keyStoreRef=”myKeys" trustStoreRef=”mytrustStore"
clientAuthenticationSupported="true" />

server.xml

<featureManager>
<feature>appSecurity-1.0</feature>

<featureManager>

<ltpa keysFileName=
”myLTPAKeysFileName.keys"

keysPassword="keysPassword"
expiration="120”
monitorInterval="5s" />

Use securityUtility to encode or encrypt the

keysPassword value.
*NEW in 17.0.0.4: AES encryption for passwords (new
wlp.password.encryption.key property)

Liberty & Single sign-on – SAML 2.0

• Security Assertion Markup Language (SAML 2.0)
– SAML is an Oasis standard for representing and exchanging user identity.
– Web users authenticate to a SAML identity provider (IdP) and receive a SAML assertion.
– 3 entities, 1) end user, 2) identity provider (IdP), and 3) service provider.
– User always authenticates through IdP and SP uses IdP with assertion doc to identify the user.
– Liberty feature : <feature>samlWeb-2.0</feature>

42

Service provider-initiated Web single sign-on (end user
starting at SP)
1. End user visits the SP.
2. SP redirects the user to the IdP.
3. The end user authenticates to the IdP.
4. The IdP sends the SAML response and assertion to

the SP.
5. The SP verifies the SAML response and authorizes

the user request.

(because SAML token is standalone, no longer need access to user
registry to check access)

Liberty & Single sign-on – SAML 2.0 (part 2)

43

Identity provider-initiated Web single sign-on (end user
starting at IdP)
1. End user visits the SAML IdP.
2. IdP authenticates user and issues a SAML assertion.
3. The IdP re-directs user to the SP with

SAMLResponse.
4. The SP verifies the SAML response and authorizes

the user request.

(used extensively by web portals)

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/cwlp_saml_web_sso.html

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/cwlp_saml_web_sso.html

Liberty & Single sign-on – SPNEGO

• Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO)
– SPNEGO is a standard defined in IETF RFC 2478. When enabled

in Liberty SPNEGO is initialized when the first HTTP request
arrives.

– Client applications – such as Microsoft .NET, web service and
J2EE client that supports SPNEGO web applications.
• SPNEGO is most commonly associated with Microsoft Active Directory
• Users must request SPNEGO tokens from the Kerberos KDC and send the

token to the server
• SPNEGO web authentication code in the server validates the token and makes

authorization decisions from this.

– Server generates LTPA token and returns it in the HTTP
response.

44
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_spnego_config.html

Sample SNPEGO config
<spnego id="mySpnego"

includeClientGSSCredentialInSubject="false"

krb5Config=

"${server.config.dir}/resources/security/kerberos/k

rb5.conf"

krb5Keytab=

"${server.config.dir}/resources/security/kerberos/k

rb5.keytab"

servicePrincipalNames=

"HTTP/myLibertyMachine.example.com"
authFilterRef="myAuthFilter" /> </spnego>

Features needed for SPNEGO in Liberty
<featureManager>

<feature>spnego-1.0</feature>
<feature>appSecurity-2.0</feature> .

</featureManager>

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_spnego_config.html

Liberty & Single sign-on – SPNEGO

45

SPNEGO web authentication in a single Kerberos realm
1. User logs on to Microsoft domain controller

(MYDOMAIN.EXAMPLE.COM).
2. User requests protected web resource (HTTP GET).
3. SPNEGO support in Liberty responds with HTTP 401

unauthorized (with Authenticate Negotiate status).
4. Client/browser sees Negotiate and handshakes with KDC to

get a Kerberos service ticket.
5. Client responds the server Negotiate with the Kerberos ticket

(token) in the HTTP request header.
6. Liberty retrieves the SPNEGO token, validates it and retrieves

the identity/principal for the user.
7. Liberty completes the authentication for the user from it’s

registry and performs authorization checks.
8. If access permitted, Liberty executes the request and sends

client HTTP 200 OK and any response payload.

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/cwlp_spnego.html

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/cwlp_spnego.html

Liberty & Single sign-on – SPNEGO part 2

46

SPNEGO web authentication in trusted Kerberos realms
1. User logs on to Microsoft domain controller

(TRUSTEDREALM.ACME.COM).
2. User requests protected web resource (HTTP GET) on

MYDOMAIN.EXAMPLE.COM.
3. SPNEGO support in Liberty responds with HTTP 401

unauthorized (with Authenticate Negotiate status).
4. Client/browser sees Negotiate and handshakes with KDC on

TRUSTEDREALM.ACME.COM – requesting
MYDOMAIN.EXAMPLE.COM and gets a Kerberos cross realm
service ticket.

5. Client/browser uses cross realm ticket to call KDC in
MYDOMAIN.EXAMPLE.COM, retrieving another service ticket.

6. Client responds the server Negotiate with the Kerberos service
ticket (token) in the HTTP request header.

7. Liberty retrieves the SPNEGO token, validates it and retrieves
the identity/principal for the user.

8. Liberty completes the authentication for the user from it’s
registry and performs authorization checks.

9. If access permitted, Liberty executes the request and sends
client HTTP 200 OK and any response payload.

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.

websphere.wlp.doc/ae/cwlp_spnego.html

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/cwlp_spnego.html

Liberty & Single sign-on – OAuth 2.0

• OAuth 2.0 (spec finalized in 2012)
– OAuth is a ‘delegation protocol’ for conveying authorization decisions across a network. It does NOT provide

Authentication though it can be used as part of Authentication.
– Key concepts –

• Resource owner – grants access to protected resource – usually an end user
• Resource server – server hosting protected resources – accepts/responds requests for resource using access tokens
• Client – ‘application’ running anywhere that makes requests to Resource server on behalf of resource owner (aka ‘relying party’)
• Authorization server – server that issues tokens to client after successfully driving authentication and obtaining user’s permissions

User accounts

End user/

Resource
owner

Client application
(aka Relying Party)

1

2

Authorization Server
(OAuth provider)

Tokens, identity
API claims, verification

Resource Server3

4

Authorization and
Resource server
shown logically
separate. Very
often these are the
same server.

Features needed for OAuth 2.0 in Liberty
<featureManager>

<feature>jsp-2.0</feature>
<feature>servlet-3.0</feature>
<feature>sss-1.0</feature>
<feature>oauth-2.0</feature>
<feature>appSecurity-1.0</feature> .

</featureManager>

Token
verification

https://developers.google.com/identity/protocols/OAuth2

https://www.ibm.com/support/knowledgecenter/en/SSZSXU_6.2.2.7/com.ibm.tivoli.fim.doc_6227/config/concept/OAuth20Workflow.html

https://developers.google.com/identity/protocols/OAuth2
https://www.ibm.com/support/knowledgecenter/en/SSZSXU_6.2.2.7/com.ibm.tivoli.fim.doc_6227/config/concept/OAuth20Workflow.html

Liberty & Single sign-on – Open ID Connect (OIDC)

• OpenID Connect 1.0 (OIDC) is a simple identity protocol over OAuth 2.0. OIDC is a popular
Internet SSO protocol, and it works well with cloud, mobile, and native applications.

• OIDC lets a client application request the identity of the user as an ID token in a standardized,
REST-like manner. In addition, the client application can use access tokens to access REST-like
Services.

• OIDC refers to ‘OpenID Connect Client’ as ‘Relying Party’ (RP) and authorization server as
‘OpenID Connect Provider’ (OP).
– RP depends on the OP to provide secure tokens that represent users and their permissions.

• It is common for an OIDC provider to issue JSON Web tokens (JWTs) as access tokens.
– JWTs provide a standardized way to represent information that is secure (contains digital signature)

• Liberty supports both JWT and OpenID Connect for single-sign on. Here are high level summaries
of JWT and OpenID Connect functions in Liberty.
– Liberty can be a dedicated OpenID Connect server for single-sign on.
– Liberty can be OpenID Connect client and relying party.
– Liberty can accept JWTs as authentication tokens.
– Liberty provides APIs to self-issue JWTs, and consume JWTs.

Liberty & Single sign-on – Open ID Connect (OIDC)

• Open ID Connect for single sign-on.

49

Liberty or
other Java EE containers

1. User goes to Liberty OIDC protected
application.

2. Liberty as RP redirects user to OP
which returns auth. code (authenticating user
if needed).
3. RP exchanges the auth. code for and id
token & JWT access token
4. Application in Liberty RP makes call to
Application 1 (JWT is propagated)

5. Server hosting Application 1 verifies JWT &
creates JsonWebToken & subject
6. Server hosting Application 1 authorizes
request to call Application 2 with
JsonWebToken.
7. Server hosting Application 2 verifies JWT &
creates JsonWebToken & subject

Browser/Client Application in
Liberty server

with OIDC Client (RP)

Liberty server as
OIDC Provider (OP) or

any 3rd party OIDC
provider

Application 1

JsonWebToken is accessible via CDI or JAX-RS
SecurityContext. Use of JWT for additional
authorization, or propagate JWT to another service

Make authz decision based on JWT
claims (no registry needed)

Application 2
propagate

JWT

Re-direct & request auth. code that
represents id token & access token
JWT

Authorization server: Issues access token (JWT) and
an ID token (JWT)

1

2

3

4

5 6

propagate
JWT

Resource server: drive authentication to backend
repository. Supports
• LDAP based with username or client cert.
• Use of SAML external identity provider
• Use of external OIDC provider
• Use of social medium (ie: Facebook, google)
• Use of TAI (trust association interceptor)

7

Exchange auth code for JWT
access token and ID token

Liberty & Single sign-on – Social Media Login

• Social Login (feature SocialLogin-1.0)

50

OpenID Connect

github

facebook
twitter

Google

AZURE

IBM BlueID

Social Media

Browser/Client Application in
Liberty server

with OIDC Client (RP)

Liberty server as
OIDC Provider (OP) or

any 3rd party OIDC
provider

)

Application 1

JsonWebToken is accessible via CDI or JAX-RS
SecurityContext. Use of JWT for additional
authorization, or propagate JWT to another service

Make authz decision based on JWT
claims (no registry needed)

Application 2
propagate

JWT

Re-direct & request auth. code that
represents id token & access token
JWT

Authorization server: Issues access token (JWT) and
an ID token (JWT)

1

2

3

4

5 6

propagate
JWT

Resource server: drive authentication to backend
repository. Supports
• LDAP based with username or client cert.
• Use of SAML external identity provider
• Use of external OIDC provider
• Use of social medium (ie: Facebook, google)
• Use of TAI (trust association interceptor)

7

Exchange auth code for JWT
access token and ID token

WebSphere Proof of Technology

March 2018

Authorization

JEE Role based authorization and Liberty

52

<servlet>

<servlet-name>myHello</servlet-name>

<servlet-class>HelloServlet</servlet-class>

<security-role>

<role-name>MyRole</role-name>

</security-role>

</servlet>

Who Are You?

This is authentication. We
looked at that earlier. Once a

user successfully
authenticates, the server

knows who the user is.

What Are You Allowed To Do?

This is authorization. It is a function of the application.
An application may or may not define different "roles,"
but if roles are defined, then the server gets involved to
help the application determine if a user is a member of

the defined role.

Application WAR File web.xml Liberty server.xml

<feature>appSecurity-2.0</feature>

<application

id="myServlet“ name="myServletWAR" type="war"

location="/<path>/myServletWAR.war" >

<application-bnd>

<security-role name="MyRole">

<group name=”Operators" />

</security-role>

</application-bnd>

</application>

If the authenticated user is a member of this group,
then they have access to that role.

If no application-bnd in server.xml (no explicit authorization)

the default behavior is to use the group name for the role.

group

role

role

WebSphere Proof of Technology

March 2018

Other information

Using securityUtility to encrypt passwords

54

• securityUtility –

• Also supports an encode/encrypt for any string (AES) – such as for passwords

• Where more protection is needed beyond encoding.

• Use --key=encryption_key

• Specifies the key to be used when encoding using AES encryption. This string is hashed to produce an encryption key that is used to
encrypt and decrypt the password. The key can be provided to the server by defining the variable wlp.password.encryption.key
whose value is the key. If this option is not provided, a default key is used.

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html

Few things we’re working on now (looking for input)

55

• Java EE 8 Security support (JSR 375) –

– Adds CDI annotations for much of the features that formerly required config. Such as :

@WebServlet("/protectedServlet")

@ServletSecurity(@HttpConstraint(rolesAllowed = "foo"))

public class ProtectedServlet extends HttpServlet { ..

– https://javaee.github.io/security-spec and https://jcp.org/en/jsr/detail?id=375

• Auditing – (now in beta)

• JWT cookies (as next generation of LTPA)

**** Reminder (AGAIN) Next Session ****

Security Hardening and Best Practices for Running WebSphere Liberty in Production –

April 6th at 11am ET - In this session, we'll cover some fundamental best practices related to Liberty and security in a production
environment. http://ibm.biz/BdZEwB

http://ibm.biz/BdZEwB

WebSphere Proof of Technology

March 2018

Thank You
Your Feedback is Important!

